Highly Selective Synthesis of (*E*)-3-Methyl-1-trialkylsilyl-3-en-1-ynes via *trans*-Selective Alkynylation Catalyzed by Cl₂Pd(DPEphos) and Stereospecific Methylation with Methylzincs Catalyzed by Pd(^tBu₃P)₂

Ji-cheng Shi, Xingzhong Zeng, and Ei-ichi Negishi*

Herbert C. Brown Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084

negishi@purdue.edu

Received February 5, 2003

ORGANIC LETTERS

2003 Vol. 5, No. 11 1825–1828

trans-Selective (\geq 98%) monoalkynylation of 1,1-dibromo-1-alkenes and 1,1-dichloro-1-alkenes catalyzed by Cl₂Pd(DPEphos) followed by stereospecific methylation with Me₂Zn or MeZnX (X= Cl or Br) catalyzed by Pd('Bu₃P)₂ provides an efficient and stereoselective (\geq 98%) route to 5, convertible to a wide variety of enynes and conjugated dienes. In the cases of 1,1-dibromo-1-alkenes, the Sonogashira alkynylation may also be satisfactory, but it is distinctly less satisfactory than the alkynylzinc reaction in cases where 1,1-dichloro-1-alkenes are used.

Reported herein is a highly selective synthesis of (*E*)-3methyl-3-en-1-ynes via two-stage Pd-catalyzed crosscoupling¹ of 1,1-dihalo-1-alkenes (1) containing Br or Cl (eq 2 in Scheme 1, where M is a Zn group and R⁴ is a Si group). Although various protocols for the *trans*-selective substitution of 1 to 2 and/or 3 have been known since 1987,^{2–7} selective conversion of 1 to 5 via 4 appears to be unprecedented, the only reported example of Pd- or Ni-catalyzed methylation of **2** to produce **3** being that of (*Z*)-bromostilbene with Me₄-Sn.^{5c} In more recent papers,^{7a,b} *trans*-selective Sonogashira alkynylation^{7c} of PhCH₂CH₂CH=CBr₂ with HC=CSiMe₃

⁽¹⁾ For recent reviews of the Pd-catalyzed cross-coupling in general, see: (a) Negishi, E., Ed. *Handbook of Organopalladium Chemistry for Organic Synthesis*; Wiley-Interscience: New York, 2002; Vol. I, Part III, pp 215–1119. (b) Diederich, F.; Stang, P. J., Eds. *Metal-Catalyzed Cross Coupling Reactions*; VCH: Weinheim, Germany, 1998; p 517.

⁽²⁾ For papers involving Grignard reagents, see: (a) Minato, A.; Suzuki, K.; Tamao, K. J. Am. Chem. Soc. **1987**, 109, 1257. (b) Bryant-Friedrich, A.; Neidlein, R. Synthesis **1995**, 1506. (c) Braun, M.; Rahematpura, J.; Bühne, C.; Paulitz, T. C. Synlett **2000**, 1070.

followed by alkylation with a couple of alkylmagnesium chlorides catalyzed with Cl₂Ni(dppp)^{2a} was reported, but methylation was not achieved. Also known are a few alkylation reactions of (Z)-3-bromo-3-en-1-ynes not involving Pd or Ni catalysts.⁸ Interestingly, these reactions predominantly produced the stereoinverted (Z)-3-alkyl-3-en-1-ynes.

Conjugated oligoenes and oligoenynes containing stereoand regiodefined methyl-branched trisubstituted alkenes represent a large number of natural products and related compounds of biological and medicinal significance. We recently reported an efficient and selective "head-to-tail" (Hto-T)9 route to carotenoids involving Zr-catalyzed carboalumination and Pd-catalyzed alkenyl-alkenyl coupling.¹⁰ However, it is also very desirable to develop complementary "tail-to-head" (T-to-H)9 routes to cope with various structural features, including the presence of proximal asymmetric carbon and heterofunctional groups. One such protocol¹¹ that has been used with considerable success involves regioselective hydrozirconation of 2-alkynes followed by Pdcatalyzed cross-coupling, and the required alkynes are often prepared via Corey-Fuchs reaction¹² of aldehydes followed by elimination and methylation. In such cases, however, stereoselective two-stage substitution of 1,1-dihaloalkenes would be more straightforward.

(5) For papers involving organotins, see: (a) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1996, 61, 5716. (b) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1998, 63, 8965 and pertinent references therein. (c) Shen, W.; Wang, L. J. Org. Chem. 1999, 64, 8873. (d) Myers, A. G.; Goldberg, S. D. Angew. Chem., Int. Ed. 2000, 39 2732

(6) For a paper involving organozirconium derivatives, see ref 4c.

(7) For papers involving Sonogashira alkynylation, see: (a) Uenishi, J.; Matsui, K. Tetrahedron Lett. 2001, 42, 4353. (b) Uenishi, J.; Matsui, K.; Ohmaya, H. J. Organomet. Chem. 2002, 653, 141. (c) For a recent review of the Sonogashira alkynylation, see: Sonogashira, K. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p 493.

(8) (a) Miller, J. A.; Leong, W.; Zweifel, G. J. Org. Chem. 1988, 53, 1839. (b) For a synthesis of (E)-3-methyl-1-trimethylsilyl-3-decen-1-yne by Cu-promoted methylation of (Z)-(n-Hex)CH=C(AlBu₃Li)C=CSiMe₃ with MeI, see: Miller, J. A.; Zweifel, G. J. Am. Chem. Soc. 1983, 105, 1383

(9) "Head-to-tail" (H-to-T) and "tail-to-head" (T-to-H) directions in methyl-branched trisubstituted alkenes may be conveniently defined as shown below (Negishi, E.; Liou, S. Y.; Xu, C.; Huo, S. Org. Lett. 2002, 4, 261).

H-to-T
$$\xrightarrow{R^1 \swarrow R^2} R^2$$

(10) (a) Zeng, F.; Negishi, E. Org. Lett. 2001, 3, 719. (b) See also: Hoye, T.; Tennakoon, M. A. Org. Lett. 2000, 2, 1481, for a H-to-T stereocontrolled alkylation of a β -methylalkenyl derivative.

(12) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.

Table 1. Methylation or Ethylation of

(Z)-3-Halo-1-trimethylsilyl-3-en-1-ynes with Me₂Zn, MeZnX (X = Cl or Br), or Et_2Zn in the Presence of Pd Catalysts

Me or Et

5

-SiMe₃

MeMX or Et₂Zn PdL_n R -SiMe₃-

 $R^1 = n$ -Nonyl (**a**); *n*-Hexyl (**b**); Ph (**c**); Me₃SiC \equiv C (**d**); (S)-EtCHMe (e); (R)-TBSOCH₂CHMe (f). M = Zn or Mg.

		MeMX		temp	tim	e	yield	, <i>a</i> %
R ¹	Х	or Et ₂ Zn	PdL _n	°С	h	prod.	5E	5Z
<i>n</i> -Nonyl	Br	MeMgBr	Cl ₂ Ni(dppp)	23	1	5a	2^b	22
<i>n</i> -Nonyl	Br	MeMgBr	Pd(PPh ₃) ₄	23	3	5a	5^b	18
<i>n</i> -Nonyl	Br	MeMgBr	$Pd(P^{t}Bu_{3})_{2}$	23	1	5a	31 ^b	21
<i>n</i> -Nonyl	Br	Me ₂ Zn	Cl ₂ Ni(dppp)	23	1	5a	8	10
<i>n</i> -Nonyl	Br	Me ₂ Zn	Cl ₂ Pd(TFP) ₂	50	6	5a	9	71
<i>n</i> -Nonyl	Br	Me ₂ Zn	Cl ₂ Pd(DPEpho	os) 50	8	5a	18	43
<i>n</i> -Nonyl	Br	Me ₂ Zn	$Pd(PPh_3)_4$	50	3	5a	47	54
<i>n</i> -Nonyl	Br	Me ₂ Zn	Cl ₂ Pd(dppf)	50	12	5a	70	27
<i>n</i> -Nonyl	Br	Me ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	0	1	5a	(93)	<2
<i>n</i> -Nonyl	Br	MeZnCl ^c	$Pd(^{t}Bu_{3}P)_{2}$	0	1	5a	>95	<2
<i>n</i> -Nonyl	Br	MeZnX ^d	$Pd(^{\prime}Bu_{3}P)_{2}$	0	1	5a	>95	<2
<i>n</i> -Hexyl	Br	Me ₂ Zn	Pd('Bu ₃ P) ₂	23	1	5b	(91)	<2
<i>n-</i> Hexyl	Br	Et ₂ Zn	Pd(¹ Bu ₃ P) ₂	23	1	5g	(93)	<2
<i>n</i> -Hexyl	Cl	Me ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	50	12	5b	>95	<2
Ph	Br	Me ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	0	1	5c	(95)	<2
Ph	Cl	Me ₂ Zn	Pd(^t Bu ₃ P) ₂	50	12	5c	>95	<2
Ph	Cl	Et ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	50	3	5h	(91)	<2
Me ₃ Si_=	∎ Cl	Me_2Zn	$Pd(^{t}Bu_{3}P)_{2}$	50	12	5d	(94)	<2
Ēt	Br	Me ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	0	1	5e	(94)	<2
Z0, ~ "	² Br	Me ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	23	1	5f	(95)	<2
Z0, ~ e	° Br	Et ₂ Zn	$Pd(^{t}Bu_{3}P)_{2}$	23	1	5i	(99)	<2

^a By GLC with isolated yields in parentheses. ^b Two other byproducts were formed. ^c From MeLi and ZnCl₂. ^d From MeMgBr and ZnCl₂. ^e Z = tert-butyldimethylsilyl.

As implied by a related investigation mentioned above,⁸ stereospecific methylation of (Z)-3-halo-3-en-1-ynes (4) proved to be very challenging. Methylation of (Z)- $(n-C_9H_{19})$ - $CH=C(Br)C\equiv CSiMe_3(4a)$ with MeMgBr in the presence of either 5 mol % Cl₂Ni(dppp) or 5 mol % Pd(PPh₃)₄ was not clean in our hands. It was hence not a practically useful reaction. On the other hand, the Pd-catalyzed reaction of 4a with Me₂Zn proceeded to give the methylated product in high yields. As indicated by the results summarized in Table 1, however, all catalysts tested except Pd(^{*i*}Bu₃P)₂, ^{13,14} namely, $Pd(PPh_3)_4$, $Cl_2Pd(dppf)$, $Cl_2Pd(DPEphos)$ [DPEphos = bis-(2-diphenylphosphinophenyl) ether],¹⁵ and Cl₂Pd(TFP)₂ [TFP

⁽³⁾ For papers involving organoboranes, see: (a) Roush, W. R.; Moriarty, K. J.: Brown, B. B. Tetrahedron Lett. 1990, 31, 6509. (b) Roush, W. R.: Koyama, K.; Curtin, M. L.; Moriarty, K. J. J. Am. Chem. Soc. 1996, 118, 7502 and pertinent references therein. (c) Wong, L. S. M.; Sharp, L. A.; Xavier, N. M. C.; Turner, P.; Sherburn, M. S. Org. Lett. 2002, 4, 1995.

⁽⁴⁾ For papers involving organozincs, see: (a) ref 2a. (b) Minato, A. J. *Org. Chen.* **1991**, *56*, 4052. (c) Xu, C.; Negishi, E. *Tetrahedron Lett.* **1999**, 40, 431. (d) Ogasawara, M.; Ikeda, H.; Ohtsuki, K.; Hayashi, T. *Chem.* Lett. 2000, 776. (e) Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem., Int. Ed. 2000, 39, 1042.

⁽¹¹⁾ For a few representative papers, see: (a) Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4912. (b) Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4914. (c) Drouet, K. E.; Theodorakis, E. A. J. Am. Chem. Soc. 1999, 121, 456. (d) Arefolov, A.; Langille, N. F.; Panek, J. S. Org. Lett. 2001, 3, 3281. (e) For a seminal paper on regioselective hydrozirconation, see: Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 679.

⁽¹³⁾ For the use of Pd('Bu₃P)₂ in the Pd- or Ni-catalyzed C-C cross coupling, see: (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. **1999**, 38, 2411. (c) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. **2000**, 122, 4020. (d) Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719. (e) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343

⁽¹⁴⁾ For trans-selective alkylation of 1,1-dichloro-1-alkenes with Pd (t-Bu₃P)₂ as a catalyst, see: Tan, Z.; Negishi, E. Manuscript in preparation. (15) (a) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van

Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje J. Organometallics 1995, 14, 3081. (b) Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Eur. J. Inorg. Chem. 1998, 155 (c) Frid, M.; Perez, D.; Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9469.

Table 2. Pd-Catalyzed Alkynylation of 1,1-Dihalo-1-alkenes with $M = -SiR_3$

R ¹ 1	x + M—≡	≕SiR	5 mol% P 3 Protocol N	dL _n	R ¹	$= -SiR_3 + R^1 $	≡− SiR Æ	R(10	-SiR ₃ -SiR ₃		
-							temp	time			yield , %	Ь
entry	\mathbf{R}^1	Х	protocol ^a	М	SiR ₃	PdL_n	°C	h	prod.	4 <i>Z</i>	4 E	10 °
1	Ph	Br	Ν	ZnCl	SiMe ₃	Pd(PPh ₃) ₄	23	24	4c(Br)	84	<1	14
2	Ph	Br	Ν	ZnCl	SiMe ₃	$Cl_2Pd(TFP)_2$	23	1	4c(Br)	87	<1	8
3	Ph	Br	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(dppf)	0	1	4c (Br)	89	<1	3
4	Ph	Br	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	0	1	4c(Br)	90(84)	<1	8
5	Ph	Br	S	Н	SiMe ₃	Pd(PPh ₃) ₄	23	20	4c (Br)	15	<1	18
6	Ph	Br	S	Н	SiMe ₃	$Cl_2Pd(TFP)_2$	23	1	4c(Br)	18	<1	43
7	Ph	Br	S	Н	SiMe ₃	Cl ₂ Pd(dppf)	0	1	4c(Br)	78	<1	3
8	Ph	Br	S	Н	SiMe ₃	Cl ₂ Pd(DPEphos)	0	1	4c (Br)	89	<1	8
9	Ph	C1	Ν	ZnCl	SiMe ₃	Pd(PPh ₃) ₄	50	12	4c (Cl)	61	<1	12
10	Ph	C1	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(dppf)	23	6	4c (Cl)	87(84)	<1	10
11	Ph	Cl	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	23	6	4c (Cl)	84	<1	13
12	Ph	Cl	S	Н	SiMe ₃	Pd(PPh ₃) ₄	60	24	4c (Cl)	3	67(61)	21
13	Ph	Cl	S	Н	SiMe ₃	Cl ₂ Pd(dppf)	23	24	4c (Cl)	33	16	10
14	Ph	Cl	S	Н	SiMe ₃	Cl ₂ Pd(DPEphos)	23	24	4c (Cl)	56	3	4
15	<i>n</i> -Nonyl	Br	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	0	1	4a(Br)	94(87)	<1	3
16	<i>n</i> -Nonyl	Br	S	Н	SiMe ₃	Cl ₂ Pd(DPEphos)	0	1	4a(Br)	92	<1	6
17	n-Hexyl	Br	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	0	1	4b (Br)	95(88)	<1	5
18	n-Hexyl	Cl	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	50	24	4b (Cl)	65(65)	<1	8
19	<i>n</i> -Hexyl	Cl	S	Н	SiMe ₃	Cl ₂ Pd(DPEphos)	60	36	4b (Cl)	26	6	2
20	Me ₃ Si-=	Cl	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	23	6	4d(Cl)	91(88)	<1	7
21	Me ₃ Si-=	Cl	S	Н	SiMe ₃	Cl ₂ Pd(DPEphos)	23	18	4d (Cl)	84	3	12
22	<u>~`_</u>	Br	Ν	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	0	1	4e(Br)	96(94)	<1	2
23	TBSO	Br	Ν	ZnBr	SiMe ₃	Cl ₂ Pd(DPEphos)	0	6	4f(Br)	87(77)	<1	13
24	TBSO	Br	S	Н	SiMe ₃	Cl ₂ Pd(DPEphos)	23	1	4f(Br)	90(74)	<1	10
25	TBSO	Br	S	Н	SiMe ₃	Cl ₂ Pd(dppf)	23	1	4f(Br)	89(73)	<1	11
26	TBSO	Br	Ν	ZnBr	SiPh ₃	Cl ₂ Pd(DPEphos)	0	6	4g(Br)	99(99)	<1	<1
27	TBSO	Br	Ν	ZnBr	SiPr' ₃	Cl ₂ Pd(DPEphos)	0	6	4h (Br)	99(86)	<1	<1

^{*a*} N = Negishi alkynylation in THF. S = Sonogashira alkynylation in benzene with CuI (5 mol %) and ${}^{i}Pr_{2}NH$ (2 equiv). ^{*b*} By GLC. Isolated yields in parentheses. ^{*c*} Formation of 1% of this product requires 2% of the starting alkyne.

= tris(2-furyl)phosphine],¹⁶ led to stereoisomerization to extents ranging from 28 to 89%. It is also noteworthy that the reaction of **4a** with Me₄Sn^{5c} in the presence of Pd₂(dba)₃ and TFP also led to extensive stereoisomerization. *Thus, the use of Pd*('Bu₃P)₂ was crucial in achieving stereospecific methylation in high yields with nearly 100% retention of configuration.

The results summarized in Table 1 also indicate the following. (1) Methylzinc derivatives generated in situ by treating either MeMgBr or MeLi with dry ZnCl₂ or ZnBr₂ in a molar ratio of 1:1 to 2:1 are comparably satisfactory. (2) On the other hand, MeMgBr without the addition of a Zn salt converted **4a** into a mixture of (*E*)-**5a** and its (*Z*)-isomer in 31 and 21% yields, respectively, along with a byproduct produced in a significant amount even in the presence of Pd('Bu₃P)₂. (3) The methylation of 1,1-dichloro-1-alkenes with methylzincs in the presence of Pd('Bu₃P)₂ is slower than but as satisfactory as the corresponding reaction of the dibromo derivatives. (4) The methylation procedure

appears to be of wide scope with respect to R^1 in 4. Thus, not only alkyl groups, e.g., *n*-Hex, *n*-C₉H₁₉, and TBSOCH₂-(Me)CH– but also aryl groups, e.g., Ph, and alkynyl groups, e.g., Me₃SiC=C–, can serve satisfactorily as the R¹ group in 4. Although the current scope of our investigation is largely limited to methylation, the use of Et₂Zn was similarly satisfactory with little or no complication due to the presence of β hydrogens.

Having developed a highly selective and high-yielding methylation of **4** to give **5**, we then focused our attention on the *trans*-selective alkynylation of **1** to produce the requisite **4**. Prior to our study, this transformation was achieved exclusively by Pd-catalyzed alkynylation of 1,1-dibromo-1-alkenes with alkynylmetals containing Mg or Zn^{2b,4d} and with terminal alkynes^{7a,b} only in modest yields ($\leq 68\%$).¹⁷

In view of these results, an extensive study was undertaken to develop superior procedures. Two main side reactions, i.e., competitive dialkynylation and formation of (E)- and

⁽¹⁶⁾ Farina, V.; Baker, S. R.; Sapino, C., Jr. *Tetrahedron Lett.* **1988**, 29, 6043.

⁽¹⁷⁾ In an earlier paper,^{7a} the alkynylation with HC=CSiMe₃ in the presence of Cl₂Pd(dppf) was reported to give the desired product in 87% yield, but a subsequent full paper^{7b} changed the yield to 68%.

(Z)- stereoisomeric mixtures, were observed. The results summarized in Table 2 indicate the following. First, the reaction of either 1,1-dibromo- or 1,1-dichloro-1-alkenes with $ClZnC \equiv CSiMe_3$ in the presence of 5 mol % Cl_2Pd - $(DPEphos)^{15}$ proved to be the most satisfactory procedure, leading to the desired monoalkynylation products in $\geq 84\%$ yields except in the reaction of 1,1-dichloro-1-octene, where the product yield was 65%. Second, the reaction of 1,1dibromo-1-alkenes is nearly 100% stereoselective. The extent of dialkynylation in each case is <10%, corresponding to the consumption of 0.2 molar equiv of $ClZnC \equiv CSiMe_3$ relative to the dibromide.

On the other hand, alkynylation of 1,1-dichloro-1-alkenes displays more widely varied results. Even with Cl₂Pd-(DPEphos), the Sonogashira alkynylation using HC=CSiMe₃ (1.2-1.3 molar equiv), CuI (5 mol %), Cl₂Pd(DPEphos) (5 mol %), and 'Pr₂NH (2 equiv) proceeded slowly at 23 °C and was accompanied by detectable formation of the (*E*)isomer. Third, dppf may be nearly as effective as DPEphos in some cases but is at least somewhat inferior to the latter, while PPh₃, TFP, dppb, and 'Bu₃P are distinctly inferior to DPEphos with some exceptions. Fourth, the use of bulky silyl groups, e.g., Ph₃Si and 'Pr₃Si, is effective in avoiding dialkynylation, even with highly demanding substrates such as **4f**.

Despite the favorable results presented above, the *trans*selective monoalkynylation protocol reported herein is still of limited scope with respect to R^4 in **4** and **5**. In contrast, with the favorable results observed with silyl-substituted alkynes, extensive dialkynylation has been observed with other alkynes and their zinc derivatives, including those containing Me, Ph, PhCH=CH, and TBSOCH₂ under various conditions, even though favorable results such as those shown in Scheme 2 were also observed in some exceptional cases.

Scheme 2								
Br Ph,,,,,,,,Br	ClZn \longrightarrow Ph (1.3 5 mol% PdL _n THF, 23 °C	equiv) Br Ph ↓ Ph +	PhPh					
	PdL _n	monoalkynylation, %	dialkynylation, %					
	Pd(PPh ₃) ₄ Cl ₂ Pd(dppf) Cl ₂ Pd(DPEphos	81 35) 66	6 40 26					

Further development is clearly desirable. In the meantime, however, various 3-bromo- and 3-methyl-substituted 1-trialkylsilyl-3-en-1-ynes preparable by the process reported herein may be desilylated and further converted into a wide variety of their derivatives, as exemplified by the conversion of **5f** to **6** via desilylation with K_2CO_3 —MeOH and then to **7** via lithiation with *n*-BuLi and methylation with MeI both in nearly quantitative yields. Conversion of **6** into a trienonic ester **8** in one pot in 94% yield as a single stereoisomer (\geq 98%) is also noteworthy (Scheme 3). The potential

synthetic value of the method reported herein is further demonstrated by the five-step synthesis of enyne **9** (\geq 98% (*E*)- and 92% ee) from 1-heptene in 65% overall yield (Scheme 4). This enyne can potentially serve as a convenient

intermediate for the synthesis of a recently reported potent topoisomerase inhibitor, topostatin.¹⁸

Acknowledgment. We thank the National Science Foundation (CHE-0080795), the National Institutes of Health (GM 36792), and Purdue University for support of this research.

Supporting Information Available: Experimental procedures, spectroscopic data, and spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL030017X

⁽¹⁸⁾ Suzuki, K.; Yahara, S.; Kido, Y.; Nagao, K.; Hatano, Y.; Uyeda, M. J. Antibiot. **1998**, *51*, 999.