Highly Selective Synthesis of (*E***)-3-Methyl-1-trialkylsilyl-3-en-1-ynes via** *trans***-Selective Alkynylation Catalyzed** by Cl₂Pd(DPEphos) and Stereospecific **Methylation with Methylzincs Catalyzed by Pd(***^t* **Bu3P)2**

Ji-cheng Shi, Xingzhong Zeng, and Ei-ichi Negishi*

Herbert C. Brown Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084

negishi@purdue.edu

Received February 5, 2003

ORGANIC LETTERS

2003 Vol. 5, No. 11 ¹⁸²⁵-**¹⁸²⁸**

*trans***-Selective (≥98%) monoalkynylation of 1,1-dibromo-1-alkenes and 1,1-dichloro-1-alkenes catalyzed by Cl₂Pd(DPEphos) followed by** stereospecific methylation with Me₂Zn or MeZnX (X= Cl or Br) catalyzed by Pd(^{*r*Bu₃P)₂ provides an efficient and stereoselective (≥98%) route
to 5, convertible to a wide variety of envoys and conjugated dienes. In} **to 5, convertible to a wide variety of enynes and conjugated dienes. In the cases of 1,1-dibromo-1-alkenes, the Sonogashira alkynylation may also be satisfactory, but it is distinctly less satisfactory than the alkynylzinc reaction in cases where 1,1-dichloro-1-alkenes are used.**

Reported herein is a highly selective synthesis of (*E*)-3 methyl-3-en-1-ynes via two-stage Pd-catalyzed crosscoupling1 of 1,1-dihalo-1-alkenes (**1**) containing Br or Cl (eq 2 in Scheme 1, where M is a Zn group and \mathbb{R}^4 is a Si group). Although various protocols for the *trans*-selective substitution of 1 to 2 and/or 3 have been known since 1987 ,²⁻⁷ selective conversion of **1** to **5** via **4** appears to be unprecedented, the

only reported example of Pd- or Ni-catalyzed methylation of **2** to produce **3** being that of (*Z*)-bromostilbene with Me4- Sn.5c In more recent papers,7a,b *trans*-selective Sonogashira alkynylation^{7c} of PhCH₂CH₂CH=CBr₂ with HC=CSiMe₃

⁽¹⁾ For recent reviews of the Pd-catalyzed cross-coupling in general, see: (a) Negishi, E., Ed. *Handbook of Organopalladium Chemistry for Organic Synthesis*; Wiley-Interscience: New York, 2002; Vol. I, Part III, pp 215-1119. (b) Diederich, F.; Stang, P. J., Eds*. Metal-Catalyzed Cross Coupling Reactions*; VCH: Weinheim, Germany, 1998; p 517.

⁽²⁾ For papers involving Grignard reagents, see: (a) Minato, A.; Suzuki, K.; Tamao, K. *J. Am. Chem. Soc.* **1987**, *109*, 1257. (b) Bryant-Friedrich, A.; Neidlein, R. *Synthesis* **1995**, 1506. (c) Braun, M.; Rahematpura, J.; Bühne, C.; Paulitz, T. C. *Synlett* **2000**, 1070.

followed by alkylation with a couple of alkylmagnesium chlorides catalyzed with $Cl_2Ni(dppp)^{2a}$ was reported, but methylation was not achieved. Also known are a few alkylation reactions of (*Z*)-3-bromo-3-en-1-ynes not involving Pd or Ni catalysts.⁸ Interestingly, these reactions predominantly produced the stereoinverted (*Z*)-3-alkyl-3-en-1-ynes.

Conjugated oligoenes and oligoenynes containing stereoand regiodefined methyl-branched trisubstituted alkenes represent a large number of natural products and related compounds of biological and medicinal significance. We recently reported an efficient and selective "head-to-tail" (H to -T)⁹ route to carotenoids involving Zr-catalyzed carboalumination and Pd-catalyzed alkenyl-alkenyl coupling.¹⁰ However, it is also very desirable to develop complementary "tail-to-head" $(T$ -to-H $)^9$ routes to cope with various structural features, including the presence of proximal asymmetric carbon and heterofunctional groups. One such protocol¹¹ that has been used with considerable success involves regioselective hydrozirconation of 2-alkynes followed by Pdcatalyzed cross-coupling, and the required alkynes are often prepared via Corey-Fuchs reaction¹² of aldehydes followed by elimination and methylation. In such cases, however, stereoselective two-stage substitution of 1,1-dihaloalkenes would be more straightforward.

(5) For papers involving organotins, see: (a) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. *J. Org. Chem*. **1996**, *61*, 5716. (b) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. *J. Org. Chem*. **1998**, *63*, 8965 and pertinent references therein. (c) Shen, W.; Wang, L. *J. Org. Chem*. **1999**, *64*, 8873. (d) Myers, A. G.; Goldberg, S. D. *Angew. Chem., Int. Ed*. **2000**, *39*, 2732.

(6) For a paper involving organozirconium derivatives, see ref 4c.

(7) For papers involving Sonogashira alkynylation, see: (a) Uenishi, J.; Matsui, K. *Tetrahedron Lett*. **2001**, *42*, 4353. (b) Uenishi, J.; Matsui, K.; Ohmaya, H. *J. Organomet. Chem*. **2002**, *653*, 141. (c) For a recent review of the Sonogashira alkynylation, see: Sonogashira, K. In *Handbook of Organopalladium Chemistry for Organic Synthesis*; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p 493.

(8) (a) Miller, J. A.; Leong, W.; Zweifel, G. *J. Org. Chem*. **1988**, *53*, 1839. (b) For a synthesis of (*E*)-3-methyl-1-trimethylsilyl-3-decen-1-yne by Cu-promoted methylation of (*Z*)-(*n*-Hex)CH=C(AlBu₃Li)C=CSiMe₃ with MeI, see: Miller, J. A.; Zweifel, G. *J. Am. Chem. Soc*. **1983**, *105*, 1383.

(9) "Head-to-tail" (H-to-T) and "tail-to-head" (T-to-H) directions in methyl-branched trisubstituted alkenes may be conveniently defined as shown below (Negishi, E.; Liou, S. Y.; Xu, C.; Huo, S. *Org*. *Lett*. **2002**, *4*, 261).

(10) (a) Zeng, F.; Negishi, E. *Org. Lett*. **2001**, *3*, 719. (b) See also: Hoye, T.; Tennakoon, M. A. *Org. Lett*. **2000**, *2*, 1481, for a H-to-T stereocontrolled alkylation of a *â*-methylalkenyl derivative.

(12) Corey, E. J.; Fuchs, P. L. *Tetrahedron Lett*. **1972**, 3769.

Table 1. Methylation or Ethylation of

(Z)-3-Halo-1-trimethylsilyl-3-en-1-ynes with Me₂Zn, MeZnX (X = Cl or Br), or Et₂Zn in the Presence of Pd Catalysts
X
MeMX or Et₂Zn Me or Et

 $(S\rightarrow CHM)$ e (e): $(R)\rightarrow TRS$ OCH₂CHMe (f) $M = Zn$ or Mg

^a By GLC with isolated yields in parentheses. *^b* Two other byproducts were formed. c From MeLi and ZnCl₂. d From MeMgBr and ZnCl₂. e Z = *tert*-butyldimethylsilyl.

As implied by a related investigation mentioned above,⁸ stereospecific methylation of (*Z*)-3-halo-3-en-1-ynes (**4**) proved to be very challenging. Methylation of (Z) - $(n$ - $C_9H_{19})$ - $CH=C(Br)C\equiv CSiMe₃(4a)$ with MeMgBr in the presence of either 5 mol % $Cl_2Ni(dppp)$ or 5 mol % $Pd(PPh_3)_4$ was not clean in our hands. It was hence not a practically useful reaction. On the other hand, the Pd-catalyzed reaction of **4a** with Me₂Zn proceeded to give the methylated product in high yields. As indicated by the results summarized in Table 1, however, all catalysts tested except Pd('Bu₃P)₂,^{13,14} namely, $Pd(PPh₃)₄$, Cl₂Pd(dppf), Cl₂Pd(DPEphos) [DPEphos = bis-(2-diphenylphosphinophenyl) ether],¹⁵ and $Cl_2Pd(TFP)_2$ [TFP

⁽³⁾ For papers involving organoboranes, see: (a) Roush, W. R.; Moriarty, K. J.; Brown, B. B. *Tetrahedron Lett*. **1990**, *31*, 6509. (b) Roush, W. R.; Koyama, K.; Curtin, M. L.; Moriarty, K. J. J. *Am. Chem. Soc*. **1996**, *118*, 7502 and pertinent references therein. (c) Wong, L. S. M.; Sharp, L. A.; Xavier, N. M. C.; Turner, P.; Sherburn, M. S. *Org. Lett*. **2002**, *4*, 1995.

⁽⁴⁾ For papers involving organozincs, see: (a) ref 2a. (b) Minato, A. *J. Org. Chem*. **1991**, *56*, 4052. (c) Xu, C.; Negishi, E. *Tetrahedron Lett*. **1999**, *40*, 431. (d) Ogasawara, M.; Ikeda, H.; Ohtsuki, K.; Hayashi, T. *Chem. Lett*. **2000**, 776. (e) Ogasawara, M.; Ikeda, H.; Hayashi, T. *Angew. Chem., Int. Ed*. **2000**, *39*, 1042.

⁽¹¹⁾ For a few representative papers, see: (a) Panek, J. S.; Hu, T. *J. Org. Chem*. **1997**, *62*, 4912. (b) Panek, J. S.; Hu, T. *J. Org. Chem*. **1997**, *62*, 4914. (c) Drouet, K. E.; Theodorakis, E. A. *J. Am. Chem. Soc.* **1999**, *121*, 456. (d) Arefolov, A.; Langille, N. F.; Panek, J. S. *Org. Lett*. **2001**, *3*, 3281. (e) For a seminal paper on regioselective hydrozirconation, see: Hart, D. W.; Blackburn, T. F.; Schwartz, J. *J. Am. Chem. Soc*. **1975**, *97*, 679.

⁽¹³⁾ For the use of $Pd(Bu_3P)_2$ in the Pd- or Ni-catalyzed C-C cross
upling see: (a) Little, A, F: Fu, G, C, *Angew Chem, Int, Ed*, 1998 coupling, see: (a) Littke, A. F.; Fu, G. C. *Angew. Chem., Int. Ed*. **1998**, *37*, 3387. (b) Littke, A. F.; Fu, G. C. *Angew. Chem., Int. Ed*. **1999**, *38*, 2411. (c) Littke, A. F.; Dai, C.; Fu, G. C. *J. Am. Chem. Soc*. **2000**, *122*, 4020. (d) Dai, C.; Fu, G. C. *J. Am. Chem. Soc*. **2001**, *123*, 2719. (e) Littke, A. F.; Schwarz, L.; Fu, G. C. J*. Am. Chem. Soc*. **2002**, *124*, 6343.

⁽¹⁴⁾ For *trans*-selective alkylation of 1,1-dichloro-1-alkenes with Pd (*^t* - Bu3P)2 as a catalyst, see: Tan, Z.; Negishi, E. Manuscript in preparation.

^{(15) (}a) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje *J. Organometallics* **1995**, *14*, 3081. (b) Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. *Eur. J. Inorg. Chem*. **1998**, 155 (c) Frid, M.; Perez, D.; Peat, A. J.; Buchwald, S. L. *J. Am. Chem. Soc*. **1999**, *121*, 9469.

Table 2. Pd-Catalyzed Alkynylation of 1,1-Dihalo-1-alkenes with $M = SiR_3$

1		SiR ₃	5 mol% PdL_n Protocol N or S a		х R^1 4Z	SiR ₃ $\dot{\mathsf{R}}^1$	SiR ₃ 4E	R^1	10	SIR ₃ SiR ₃		
							temp	time		yield , $\!\%$ $\,$		
entry	R ¹	$\mathbf X$	protocol ^a	M	SiR ₃	PdL_n	$^{\circ}C$	h	prod.	4Z	4E	$10\,^c$
$\mathbf{1}$	Ph	Br	N	ZnCl	SiMe ₃	Pd(PPh ₃) ₄	23	24	4c(Br)	84	\leq 1	14
2	Ph	Br	N	ZnCl	SiMe ₃	Cl ₂ Pd(TFP) ₂	23	1	4c(Br)	87	\leq 1	8
3	Ph	Br	N	ZnCl	SiMe ₃	Cl ₂ Pd(dppf)	θ	1	4c(Br)	89	\leq 1	3
4	Ph	Br	N	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	θ	1	4c(Br)	90(84)	\leq 1	8
5	Ph	Br	S	H	SiMe ₃	Pd(PPh ₃) ₄	23	20	4c(Br)	15	\leq 1	18
6	Ph	Br	$\mathbf S$	H	SiMe ₃	Cl ₂ Pd(TFP) ₂	23	1	4c(Br)	18	\leq 1	43
7	Ph	Br	$\mathbf S$	H	S ₁ Me ₃	Cl ₂ Pd(dppf)	$\boldsymbol{0}$		4c(Br)	78	\leq 1	3
8	Ph	Br	S	Н	S ₁ Me ₃	Cl ₂ Pd(DPEphos)	$\bf{0}$	1	4c(Br)	89	\leq 1	8
9	Ph	Cl	N	ZnCl	Simer	Pd(PPh ₃) ₄	50	12	4c(Cl)	61	\leq 1	12
10	Ph	Cl	N	ZnCl	SiMe ₃	Cl ₂ Pd(dppf)	23	6	4c(Cl)	87(84)	\leq 1	10
11	Ph	Cl	N	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	23	6	4c(Cl)	84	\leq 1	13
12	Ph	Cl	S	H	SiMe ₃	Pd(PPh ₃) ₄	60	24	4c(Cl)	3	67(61)	21
13	Ph	Cl	$\mathbf S$	H	SiMe ₃	Cl ₂ Pd(dppf)	23	24	4c(Cl)	33	16	$10\,$
14	Ph	Cl	S	H	SiMe ₃	Cl ₂ Pd(DPEphos)	23	24	4c(Cl)	56	3	$\overline{4}$
15	n -Nonyl	Br	N	ZnCl	S ₁ Me ₃	Cl ₂ Pd(DPEphos)	$\boldsymbol{0}$	$\mathbf{1}$	4a(Br)	94(87)	<1	3
16	n -Nonyl	Br	S	H	SiMe ₃	Cl ₂ Pd(DPEphos)	θ	1	4a(Br)	92	\leq 1	6
17	n -Hexyl	Br	$\mathbb N$	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	θ	1	4b(Br)	95(88)	\leq 1	5
18	n -Hexyl	Cl	N	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	50	24	4b(Cl)	65(65)	\leq 1	8
19	n -Hexyl	Cl	S	H	Sim e ₂	Cl ₂ Pd(DPEphos)	60	36	4b(Cl)	26	6	$\overline{2}$
20	$Me3Si =$	C1	N	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	23	6	$4d$ (Cl)	91(88)	<1	7
21	$Me3Si =$	Cl	S	H	SiMe ₃	Cl ₂ Pd(DPEphos)	23	18	$4d$ (Cl)	84	3	12
22	\backsim	Br	N	ZnCl	SiMe ₃	Cl ₂ Pd(DPEphos)	$\boldsymbol{0}$	1	4e(Br)	96(94)	\leq 1	$\overline{2}$
23	TBSOブ	Br	N	ZnBr	SiMe ₃	Cl ₂ Pd(DPEphos)	$\boldsymbol{0}$	6	4f(Br)	87(77)	\leq 1	13
24	TBSOブ	Br	S	H	SiMe ₃	Cl ₂ Pd(DPEphos)	23	1	4f(Br)	90(74)	\leq 1	10
25	TBSO _{>}	Br	S	H	SiMe ₃	Cl ₂ Pd(dppf)	23	1	4f(Br)	89(73)	\leq 1	11
26	TBSOブ	Br	N	ZnBr	SiPh ₃	Cl ₂ Pd(DPEphos)	$\bf{0}$	6	4g(Br)	99(99)	\leq 1	\leq 1
27	TBSO 人	Br	N	ZnBr	SiPr'	Cl ₂ Pd(DPEphos)	0	6	4h(Br)	99(86)	\leq 1	\leq 1

 $a_N = N$ equishi alkynylation in THF. S = Sonogashira alkynylation in benzene with CuI (5 mol %) and *ⁱPr*₂NH (2 equiv). *b* By GLC. Isolated yields in rentheses ^c Formation of 1% of this product requires 2% of the st parentheses. ^{*c*} Formation of 1% of this product requires 2% of the starting alkyne.

 $=$ tris(2-furyl)phosphine],¹⁶ led to stereoisomerization to extents ranging from 28 to 89%. It is also noteworthy that the reaction of **4a** with Me₄Sn^{5c} in the presence of $Pd_2(dba)$ ₃ and TFP also led to extensive stereoisomerization. *Thus, the use of Pd('Bu₃P)₂ was crucial in achieving stereospecific*
methylation in high vields with nearly 100% retention of *methylation in high yields with nearly 100% retention of configuration.*

The results summarized in Table 1 also indicate the following. (1) Methylzinc derivatives generated in situ by treating either MeMgBr or MeLi with dry $ZnCl₂$ or $ZnBr₂$ in a molar ratio of 1:1 to 2:1 are comparably satisfactory. (2) On the other hand, MeMgBr without the addition of a Zn salt converted **4a** into a mixture of (*E*)-**5a** and its (*Z*) isomer in 31 and 21% yields, respectively, along with a byproduct produced in a significant amount even in the presence of Pd('Bu₃P)₂. (3) The methylation of 1,1-dichloro-1-alkenes with methylzincs in the presence of Pd('Bu₃P)₂ is slower than but as satisfactory as the corresponding reaction of the dibromo derivatives. (4) The methylation procedure

appears to be of wide scope with respect to R^1 in 4. Thus, not only alkyl groups, e.g., *n*-Hex, *n*-C₉H₁₉, and TBSOCH₂-(Me)CH- but also aryl groups, e.g., Ph, and alkynyl groups, e.g., Me₃SiC \equiv C $-$, can serve satisfactorily as the R¹ group in **4**. Although the current scope of our investigation is largely limited to methylation, the use of $Et₂Zn$ was similarly satisfactory with little or no complication due to the presence of β hydrogens.

Having developed a highly selective and high-yielding methylation of **4** to give **5**, we then focused our attention on the *trans*-selective alkynylation of **1** to produce the requisite **4**. Prior to our study, this transformation was achieved exclusively by Pd-catalyzed alkynylation of 1,1-dibromo-1 alkenes with alkynylmetals containing Mg or $\text{Zn}^{2b,4d}$ and with terminal alkynes^{7a,b} only in modest yields $(\leq 68\%)$.¹⁷

In view of these results, an extensive study was undertaken to develop superior procedures. Two main side reactions, i.e., competitive dialkynylation and formation of (*E*)- and

⁽¹⁶⁾ Farina, V.; Baker, S. R.; Sapino, C., Jr. *Tetrahedron Lett*. **1988**, 29, 6043.

⁽¹⁷⁾ In an earlier paper,^{7a} the alkynylation with $HC = CSiMe₃$ in the presence of Cl2Pd(dppf) was reported to give the desired product in 87% yield, but a subsequent full paper^{7b} changed the yield to 68%.

(*Z*)- stereoisomeric mixtures, were observed. The results summarized in Table 2 indicate the following. First, the reaction of either 1,1-dibromo- or 1,1-dichloro-1-alkenes with $CIZnC\equiv CSiMe_3$ in the presence of 5 mol % Cl_2Pd- (DPEphos)15 proved to be the most satisfactory procedure, leading to the desired monoalkynylation products in \geq 84% yields except in the reaction of 1,1-dichloro-1-octene, where the product yield was 65%. Second, the reaction of 1,1 dibromo-1-alkenes is nearly 100% stereoselective. The extent of dialkynylation in each case is <10%, corresponding to the consumption of 0.2 molar equiv of $CIZnC\equiv CSiMe₃$ relative to the dibromide.

On the other hand, alkynylation of 1,1-dichloro-1-alkenes displays more widely varied results. Even with $Cl₂Pd-$ (DPEphos), the Sonogashira alkynylation using $HC = CSiMe₃$ $(1.2-1.3 \text{ molar equity})$, CuI (5 mol %), Cl₂Pd(DPEphos) (5 mol %), and *ⁱ* Pr2NH (2 equiv) proceeded slowly at 23 °C and was accompanied by detectable formation of the (*E*) isomer. Third, dppf may be nearly as effective as DPEphos in some cases but is at least somewhat inferior to the latter, while PPh₃, TFP, dppb, and 'Bu₃P are distinctly inferior to DPEphos with some exceptions. Fourth, the use of bulky silyl groups, e.g., Ph₃Si and ^{*i*}Pr₃Si, is effective in avoiding dialkynylation, even with highly demanding substrates such as **4f**.

Despite the favorable results presented above, the *trans*selective monoalkynylation protocol reported herein is still of limited scope with respect to $R⁴$ in 4 and 5. In contrast, with the favorable results observed with silyl-substituted alkynes, extensive dialkynylation has been observed with other alkynes and their zinc derivatives, including those containing Me, Ph, PhCH=CH, and $TBSOCH₂$ under various conditions, even though favorable results such as those shown in Scheme 2 were also observed in some exceptional cases.

Further development is clearly desirable. In the meantime, however, various 3-bromo- and 3-methyl-substituted 1-trialkylsilyl-3-en-1-ynes preparable by the process reported herein may be desilylated and further converted into a wide

variety of their derivatives, as exemplified by the conversion of **5f** to 6 via desilylation with K_2CO_3-MeOH and then to **7** via lithiation with *n*-BuLi and methylation with MeI both in nearly quantitative yields. Conversion of **6** into a trienonic ester **8** in one pot in 94% yield as a single stereoisomer $(\geq 98\%)$ is also noteworthy (Scheme 3). The potential

synthetic value of the method reported herein is further demonstrated by the five-step synthesis of enyne 9 (\geq 98%) (*E*)- and 92% ee) from 1-heptene in 65% overall yield (Scheme 4). This enyne can potentially serve as a convenient

intermediate for the synthesis of a recently reported potent topoisomerase inhibitor, topostatin.18

Acknowledgment. We thank the National Science Foundation (CHE-0080795), the National Institutes of Health (GM 36792), and Purdue University for support of this research.

Supporting Information Available: Experimental procedures, spectroscopic data, and spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL030017X

⁽¹⁸⁾ Suzuki, K.; Yahara, S.; Kido, Y.; Nagao, K.; Hatano, Y.; Uyeda, M. *J. Antibiot.* **1998**, *51*, 999.